Għażliet tat-Tfixxija
Paġna ewlenija Midja Spjegazzjonijiet Riċerka u Pubblikazzjonijiet Statistika Politika Monetarja L-€uro Ħlasijiet u Swieq Karrieri
Suġġerimenti
Issortja skont
Mhux disponibbli bil-Malti

Kristina Bluwstein

22 November 2021
WORKING PAPER SERIES - No. 2614
Details
Abstract
We develop early warning models for financial crisis prediction by applying machine learning techniques to macrofinancial data for 17 countries over 1870–2016. Most nonlin-ear machine learning models outperform logistic regression in out-of-sample predictions and forecasting. We identify economic drivers of our machine learning models using a novel framework based on Shapley values, uncovering nonlinear relationships between the predic-tors and crisis risk. Throughout, the most important predictors are credit growth and the slope of the yield curve, both domestically and globally. A flat or inverted yield curve is of most concern when nominal interest rates are low and credit growth is high.
JEL Code
C40 : Mathematical and Quantitative Methods→Econometric and Statistical Methods: Special Topics→General
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
F30 : International Economics→International Finance→General
G01 : Financial Economics→General→Financial Crises

Is-sit web tagħna juża cookies

Aħna nużaw cookies funzjonali biex naħżnu l-preferenzi tal-utent; cookies analitiċi biex intejbu l-prestazzjoni tas-sit web; cookies ta’ partijiet terzi stabbiliti minn servizzi ta' partijiet terzi integrati fil-websajt.

Għandek l-għażla li taċċettahom jew li tirrifjutahom. Għal aktar informazzjoni jew biex tirrevedi l-preferenza tiegħek fuq il-cookies u l-logs tas-server li nużaw, nistednuk biex:

Taqra l-istqarrija ta’ privatezza tagħna

Issir taf aktar dwar kif nużaw il-cookies