SØGEMULIGHEDER
Hjem Medier Explainers Forskning & Offentliggørelser Statistik Pengepolitik €uroen Betalinger & Markeder Kariere & Job
Forslag
Sortér efter
Findes ikke på dansk

Paul McNelis

28 April 2004
WORKING PAPER SERIES - No. 352
Details
Abstract
This paper applies linear and neural network-based "thick" models for forecasting inflation based on Phillips-curve formulations in the USA, Japan and the euro area. Thick models represent "trimmed mean" forecasts from several neural network models. They outperform the best performing linear models for "real-time" and "bootstrap" forecasts for service indices for the euro area, and do well, sometimes better, for the more general consumer and producer price indices across a variety of countries.
JEL Code
C12 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Hypothesis Testing: General
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation

Vi bruger cookies på vores websted

Vi bruger funktionelle cookies til at lagre brugerpræferencer, analysecookies til at forbedre webstedets resultater, tredjepartscookies, der er fastsat af tredjepartstjenester, der er integreret på webstedet.

Du kan vælge at acceptere eller afvise dem. For yderligere oplysninger eller for at gennemgå din præference for de cookies og serverlogfiler, vi bruger, opfordrer vi dig til:

Læs vores databeskyttelseserklæring

Få mere at vide om, hvordan vi bruger cookies