Opțiuni de căutare
Pagina inițială Media Materiale explicative Studii și publicații Statistici Politică monetară Euro Plăți și piețe Cariere
Sugestii
Sortează în funcție de
Nu este disponibil în limba română

Kai Carstensen

22 April 2024
WORKING PAPER SERIES - No. 2930
Details
Abstract
We study how millions of granular and weekly household scanner data combined with machine learning can help to improve the real-time nowcast of German inflation. Our nowcasting exercise targets three hierarchy levels of inflation: individual products, product groups, and headline inflation. At the individual product level, we construct a large set of weekly scanner-based price indices that closely match their official counterparts, such as butter and coffee beans. Within a mixed-frequency setup, these indices significantly improve inflation nowcasts already after the first seven days of a month. For nowcasting product groups such as processed and unprocessed food, we apply shrinkage estimators to exploit the large set of scanner-based price indices, resulting in substantial predictive gains over autoregressive time series models. Finally, by adding high-frequency information on energy and travel services, we construct competitive nowcasting models for headline inflation that are on par with, or even outperform, survey-based inflation expectations.
JEL Code
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
C55 : Mathematical and Quantitative Methods→Econometric Modeling→Modeling with Large Data Sets?
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
Network
Price-setting Microdata Analysis Network (PRISMA)

Website-ul nostru utilizează module cookie

Utilizăm module cookie funcționale pentru a stoca preferințele utilizatorilor; module cookie analitice pentru a optimiza performanța website-ului; module cookie ale unor părți terțe instalate de serviciile furnizate de acestea și integrate în website.

Poți opta să accepți sau să refuzi utilizarea acestora. Pentru mai multe informații sau pentru a-ți reevalua preferințele în ceea ce privește modulele cookie și jurnalele serverelor pe care le utilizăm:

Citește declarația noastră privind protecția vieții private

Află mai multe despre modul în care utilizăm modulele cookie