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Abstract
We propose a new method for medium-term forecasting using ex-

ogenous information. We first show how a shifting-mean autoregres-
sive model can be used to describe characteristic features in inflation
series. This implies that we decompose the inflation process into a
slowly moving nonstationary component and dynamic short-run fluc-
tuations around it. An important feature of our model is that it pro-
vides a way of combining the information in the sample and exogenous
information about the quantity to be forecast. This makes it possible
to form a single model-based inflation forecast that also incorporates
the exogenous information. We demonstrate, both theoretically and
by simulations, how this is done by using the penalised likelihood for
estimating the model parameters. In forecasting inflation, the central
bank inflation target, if it exists, is a natural example of such exoge-
nous information. We illustrate the application of our method by an
out-of-sample forecasting experiment for euro area and UK inflation.
We find that for euro area inflation taking the exogenous information
into account improves the forecasting accuracy compared to that of a
number of relevant benchmark models but this is not so for the UK.
Explanations to these outcomes are discussed.

Keywords: Nonlinear forecast; nonlinear model; nonlinear trend;
penalised likelihood; structural shift; time-varying parameter

JEL Classification Codes: C22; C52; C53; E31; E47
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Non-technical Summary 

There has been increased interest in both characterizing and forecasting inflation 
using models that capture structural change, in particular in the light of the recent 
crisis. In this study we propose a new method for generating medium-term forecasts 
incorporating quantitative exogenous information available about the future of the 
variable of interest. We show how a flexible nonstationary parametric model can be 
used to both characterise inflation and generate medium-term forecasts making use of 
quantitative exogenous information about future inflation. 

Parameters of a time series model for inflation may change over time for a variety of 
reasons. For example, changes in monetary policy regimes may affect the parameters 
of the model. A typical assumption in this context has been that the regime changes 
are abrupt. This implies that the effects of monetary policy changes are immediate and 
that the new regime is stable until there is another break in the model. However, it is 
often useful to think of these parameter changes as occurring gradually over a period 
of time. The shift in preferences towards strong price stability, reflected in the 
downward trend of euro area inflation during the 1980s, may be viewed as an 
example of this type. The downward shift in US inflation under Volcker constitutes 
another prominent example. 

There are many ways of incorporating the idea of smooth continuous changes in 
parameters into an inflation model. In this paper, we assume that the inflation process 
has a gradually shifting mean, and the fluctuation of the process around this mean is 
described by an autoregressive process. This leads to the Shifting Mean 
Autoregressive (SM-AR) model, in which the inflation process is assumed to contain 
two components: a deterministically time-varying mean and an autoregressive 
component that is stationary around the mean. We show how this model can be used 
to analyse inflation and we propose a new method for medium-term forecasting using 
exogenous information based on this model. 

Our model of time-varying mean inflation is well suited for tracking the developments 
in headline inflation that will persist in the medium term. Transient features due to 
temporary shocks to the economy are explained by the autoregressive structure of the 
model. We provide a timely measure of medium-term inflation based on a single time 
series. We show this by fitting the SM-AR model to euro area, UK and US inflation. 
This measure can also be useful if one wants to compare medium-term shifts in 
inflation between countries. 

Another new feature of our model is that it allows incorporating exogenous 
information into inflation forecasts from this model within a classical framework. We 
propose a framework for medium-term forecasting and show, both theoretically and 
by simulation, how exogenous information, when available, can be included in 
medium-term forecasts in our framework. This is done by penalizing the log-
likelihood function in the estimation of model parameters. In forecasting inflation, the 
central bank inflation target, or any other quantitative definition of price stability, is a 
natural example of such information. Since central banks that have committed to a 
quantitative aim of price stability, for instance in the form of an inflation target, aim at 
keeping inflation close to the target value, at least over the medium-term the target 
contains information that should be incorporated in the forecasts. In our model, a 
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penalty term determines the weight of the exogenous information. It reflects the 
forecaster’s subjective assessment of the commitment of the Central Bank to the 
target and chances of success of its monetary policy. 

We apply our procedure to forecasting the euro area as well as the UK inflation rate. 
In the former case the exogenous information comprises the definition of price 
stability of the European Central Bank (ECB), whereas the inflation target of the Bank 
of England plays the same role in the latter. We find that in forecasting euro area 
inflation taking this exogenous information into account does improve the  medium-
term forecast accuracy over that of a number of relevant benchmark models. 

This finding is particularly interesting given that our sample includes the period of 
high volatility of inflation during the recent financial crisis. The usefulness of our 
model for medium-term forecasting is not limited to improvements in the accuracy of 
point forecasts. The forecasting process provides a whole density forecast whose 
shape is a function of the weight the forecaster allocates to the exogenous information. 
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1 Introduction

There has been increased interest recently in both characterising and fore-
casting inflation using models that involve structural change. In this study we
propose a new method for generating medium-term forecasts incorporating
quantitative exogenous information available about the future of the vari-
able of interest. We show how a flexible nonstationary parametric model can
be used to both characterise inflation and generate medium-term forecasts
making use of quantitative exogenous information about future inflation.
Parameters of a time series model for inflation may change over time for

a variety of reasons. For example, changes in monetary policy regimes may
affect the parameters of the model.1 A typical assumption in this context
has been that the regime changes are abrupt. This implies that the effects
of monetary policy changes are immediate and that the new regime is stable
until there is another break in the model. However, it is often useful to think
of these parameter changes as occurring gradually over a period of time. The
shift in preferences towards strong price stability, reflected in the downward
trend of euro area inflation during the 1980s, may be viewed as an example
of this type. The downward shift in US inflation under Volcker constitutes
another prominent example.
There are many ways of incorporating the idea of smooth continuous

changes in parameters into an inflation model. In this paper, we assume
that the inflation process has a gradually shifting mean, and the fluctuation
of the process around this mean is described by an autoregressive process.
This leads to the Shifting Mean Autoregressive (SM-AR) model, in which
the inflation process is assumed to contain two components: a deterministi-
cally time-varying mean and an autoregressive component that is stationary
around the mean. The shifting mean may then be interpreted as a measure
of the implicit inflation target of the central bank.2 It can also be viewed as
a proxy for unobservable variables or other driving forces that are difficult
or even impossible to quantify in a satisfactory manner. Examples include
the decline in inflation due to increasing international consensus in monetary
policy aiming at price stability after high and volatile inflation during the
1970s, or increasing globalisation that has led to intensified competition. The
time-varying mean may also be considered a measure of the underlying trend
in inflation that is often referred to as ’core inflation’.3

1See e.g. Stock and Watson (2007), Sims and Zha (2006), Schorfheide (2005), Lendvai
(2006) and Pesaran, Pettenuzzo and Timmermann (2006).

2See e.g. Orphanides and Williams (2005) and Kozicki and Tinsley (2005).
3See e.g. Cogley (2002), Clark (2001) and Cristadoro, Forni, Reichlin and Veronese

(2005) for recent suggestions and/or discussions of core inflation measures.
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Our model of time-varying mean inflation is well suited for tracking the
developments in headline inflation that will persist in the medium term.
Transient features due to temporary shocks to the economy are explained by
the autoregressive structure of the model. We provide a timely measure of
medium-term inflation based on a single time series. This measure can also
be useful if one wants to compare medium-term shifts in inflation between
countries.
Another new feature of our model is that it allows incorporating exoge-

nous information into inflation forecasts from this model within a classical
framework. Manganelli (2009) recently suggested another way of doing that.
We propose a framework for medium-term forecasting and show, both theo-
retically and by simulation, how exogenous information, when available, can
be included in medium-term forecasts in our framework. This is done by
penalising the log-likelihood function in the estimation of model parameters.
In forecasting inflation, the central bank inflation target, or any other quan-
titative definition of price stability, is a natural example of such information.
Beechey and Österholm (2010) considered this idea in a Bayesian framework.
We apply our procedure to forecasting the euro area as well as the UK in-
flation rate. In the former case the exogenous information comprises the
definition of price stability of the European Central Bank (ECB), whereas
the inflation target of the Bank of England plays the same role in the latter.
We find that in forecasting euro area inflation taking this exogenous infor-
mation into account does improve the medium-term forecast accuracy over
that of a number of relevant benchmark models.
This finding is particularly interesting given that our sample includes

the period of high volatility of inflation during the recent financial crisis.
The usefulness of our model for medium-term forecasting is not limited to
improvements in the accuracy of point forecasts. The forecasting process
gives us a whole density forecast whose shape is a function of the weight the
forecaster allocates to the exogenous information.
The plan of the paper is the following: The SM-AR model and outlines

of modelling are presented in Section 2. Empirical results for modelling the
euro area, UK and US inflation appear in Section 3. In Section 4 it is shown
how sample information and exogenous information can be combined into a
single (density) forecast using the SM-AR model. Section 5 contains results
from a pseudo out-of-sample forecasting experiment in which medium-term
forecasts from our SM-AR model are compared with forecasts from a number
of benchmark models. Our conclusions can be found in Section 6.
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2 A framework for modelling inflation

2.1 An autoregressive model with a shifting mean

The modelling and forecasting tool in this work is the autoregressive model
with a shifting mean, the SM-AR model. The shift is a smooth determin-
istic function of time, which implies assuming inflation to be a nonstation-
ary process. The SM-AR model of order p has the following definition, see
González and Teräsvirta (2008):

yt = δ(t) +

p�
j=1

φjyt−j + εt (1)

where the roots of the lag polynomial 1 −
p
j=1 φjL

j lie outside the unit
circle, L is the lag operator: Lxt = xt−1. As all roots of the lag polynomial lie
outside the unit circle, {yt} is stationary around the shifting mean. The errors
εt form a sequence of independent, identically (0,σ2) distributed random
variables, and δ(t) is a bounded deterministic nonlinear shift function or
shifting intercept. In parameter estimation and statistical inference it is
assumed that the error distribution is normal.
In empirical work, δ(t) is often a linear function of t, in which case yt in

(1) is called ’trend-stationary’. Contrary to this, González and Teräsvirta
(2008) define δ(t) as a bounded function of time:

δ(t) = δ0 +

q�
i=1

δig(γi, ci, t/T ) (2)

where δi, i = 1, . . . , q, are parameters, T is the number of observations, and
g(γi, ci, t/T ), i = 1, . . . , q, are logistic transition functions or sigmoids:

g(γi, ci, t/T ) =
�
1 + exp{−γi(t/T − ci)}

�−1
(3)

with γi > 0, i = 1, . . . , q. The components in the shift function (2) are
exchangeable, and identification is achieved for example by assuming c1 <
· · · < cq.
The parametric form of (2) is very flexible and contains as special cases

well known examples of nonlinear functions. For instance, when δ1 = · · · =
δq = 0, (2) becomes constant, and when q = 1, δ(t) changes smoothly from
δ0 to δ0 + δ1 as a function of t, with the centre of the change at t = c1T .
The smoothness of the change is controlled by γ1: the larger γ1, the faster
the transition. When γ1 → ∞, δ(t) collapses into a step function, so there
is a single break in the intercept. On the contrary, when γ1 is close to zero,
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δ(t) represents a slow monotonic shift that is approximately linear around c.
Values q > 1 add flexibility to δ(t) by making nonmonotonic shifts possible.
More generally, δ(t) is a so-called universal approximator. Suppose yt =

f(t), that is, there exists a functional relationship between y and t. Then,
under mild regularity conditions for f, the relationship is arbitrarily accu-
rately approximated by replacing f(t) by (2) where q ≤ q0 < ∞, see, for
example, Cybenko (1989), Funahashi (1989) or Hornik, Stinchcombe and
White (1989). One could also use a completely nonparametric function as in
Priestley and Chao (1972) and Benedetti (1977), but the linear combination
of sigmoids (2) as in neural network models appears more suitable for our
forecasting problem. From (1) it follows that the time-varying mean of the
process equals

Etyt = (1−
p�
j=1

φjL
j)−1δ(t).

2.2 Model specification and estimation

The specific form of the SM-AR model has to be determined from the data.
This implies selecting p and q, which will be done by using statistical in-
ference. There is no natural order in which the choice is made. Priority
may be given to selecting q first if the emphasis lies on specifying a model
with a shifting mean. For example, if one is modelling the developments
in the 1980’s and wants to proxy the unobservable tendencies by time in-
stead of including them in the autoregressive component of the model, one
may want to select q first. Some techniques of modelling structural change
by breaks use an analogous order: the break-points are determined first,
and the dynamic structure of the regimes thereafter. The decision is left
to the model builder. Nevertheless, when q is selected first, one may use
a heteroskedasticity-autocorrelation consistent (HAC) estimator for the co-
variance matrix of the estimators throughout the selection process and thus
account for the fact that there is autoregressive structure around the mean.
This is the case in the applications of Section 3.
In this work we apply a procedure for selecting q that González and

Teräsvirta (2008) call QuickShift. It has two useful properties. First, it
transforms the model selection problem into a problem of selecting variables,
which simplifies the computations. Second, overfitting is avoided. QuickShift
is a modification of QuickNet, a recent method White (2006) developed for
building and estimating artificial neural network models. The functioning
of QuickShift is described in Appendix A. One could also apply Autometrics
(Doornik 2008, 2009) or the Marginal Bridge Estimator (Huang, Horowitz
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and Ma, 2008) to this specification problem, see Kock and Teräsvirta (2011)
for a related example, but it has not been done here.
Full maximum likelihood estimation of parameters of the SM-AR model

including γi and ci, i = 1, . . . , q, may not be necessary, because QuickShift
in general provides good approximations to maximum likelihood estimates
when the grid is sufficiently dense. Nevertheless, if one wants to continue,
a derivative-based algorithm with a short initial step-length should thus be
sufficient to maximize the log-likelihood. Should there be numerical prob-
lems, however, they may be solved by applying a global optimization algo-
rithm such as simulated annealing (with a rather low initial temperature)
or a genetic algorithm and using the vector of parameters (γ �, c�)�, where
γ = (γ1, . . . , γq)

� and c = (c1, . . . , cq)
� are selected by QuickShift, as initial

values. The maximum likelihood estimators of the parameters of the SM-AR
model are consistent and asymptotically normal. The proofs require time to
be rescaled to the interval (0, 1]. They can be found In Appendix B.
This approach may be compared to filtering. In some cases filtering a

trend component from a series using a filter such as the one by Leser (1961)
(often called the Hodrick-Prescott filter), may lead to results similar to ones
obtained by modelling the shifting mean using QuickShift. An essential dif-
ference between the filtering and our approach is, however, that the latter is
completely parametric, and modelling the shifting mean and the dynamics
around it can be done simultaneously. Another difference is that, contrary to
extrapolating filtered series, forecasting with the SM-AR model is a straight-
forward exercise. It should be pointed out, however, that the SM-AR model
is not a feasible tool for very short-term forecasting because of its lack of
adaptability. It is, however, well-suited for medium-term forecasting when
extraneous information, for example in the form of a central bank inflation
target, is available. This will be discussed in Section 4.1.

2.3 Other approaches to modelling inflation

The SM-AR model is an example of a time-varying parameter model, but
there are others. For example, one may assume that parameter variation is
stochastic; for various types of the stochastic-parameter model see Teräsvirta,
Tjøstheim and Granger (2010, Sections 3.10—11). Recently, Stock and Wat-
son (2007) characterised the US inflation with a model based on decomposing
the inflation series into two stochastic unobserved components. With con-
stant parameters, the model is simply an ARIMA(0,1,1) model. Parameter
variation is introduced by letting the variances of the two unobserved com-
ponents be nonconstant over time. They are assumed to follow a stochastic
volatility model, that is, their logarithms are generated by a first-order au-
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toregressive process, which in this case is a pure random walk. The first
one of the two stochastic unobserved components represents the ’trend’ or
the gradually shifting component of inflation, whereas the second contains all
short-run fluctuations.4 In the SM-ARmodel the shift component of inflation
is deterministic and there is short-run random variation around it.
Other methods to model time-variation in inflation with the aim of de-

scribing medium-term inflation developments and changes in the inflation
target, include Kozicki and Tinsley (2005) who estimated a model with a
VAR-like structure that allowed for shifts in the inflation target and imper-
fect policy credibility. Kozicki and Tinsley (2006) provided a measure of
the private sector’s perception of the inflation target of monetary policy and
found that it has shifted considerably over time. However, both papers by
Kozicki and Tinsley are not concerned with forecasting, as we are in this pa-
per. An early paper related to ours is Cogley (2002) who proposed a simple
exponential smoothing to derive a ’core’ (or ’underlying’ or ’medium-term’)
inflation measure. Further references to papers that aim at forecasting infla-
tion using time-varying parameter models are discussed in Section 4.2.2.

3 Modelling gradual shifts in inflation

In this section we show how the SM-ARmodel can be used to model medium-
term developments in headline inflation. Our shifting mean inflation measure
can be interpreted as an ’underlying’ or ’core’ measure of inflation, and we
shall show that its response to temporary shocks is limited. The recent period
of volatile inflation beginning in mid-2007, mainly due to large changes in
energy and food inflation, is a case in point.

3.1 Data

The series representing euro area inflation is the seasonally adjusted monthly
Harmonised Index of Consumer Prices (HICP). We also estimate SM-AR
models for the monthly CPI inflation for the UK and the US based on
monthly year-on-year inflation series. What makes modelling and forecasting
inflation of the euro area and the UK particularly interesting is the fact that
the European Central Bank (ECB) provides an explicit formulation for its
aim of price stability, and the Bank of England is one of the inflation target-
ing central banks. The time series for the euro area covers the period from

4Similar ideas of allowing for a shifting trend inflation process modelled as a driftless
random walk without or with stochastic volatility in parameter innovations can be found
in Cogley and Sbordone (2008) and Cogley, Primiceri and Sargent (2010).
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1981(1) to 2010(6). It consists of annual differences of the monthly, season-
ally adjusted and backdated Harmonised Index of Consumer Prices, in which
fixed euro conversion rates have been used as weights when backdating. The
availability of aggregated backdata for the euro area and the launch of the
European Monetary System in 1979 determine the beginning of the series.
Both the UK and the US year-on-year inflation series begin 1981(1) and end
2010(6). They comprise annual differences of the monthly Consumer Price
Index (CPI). The euro area series is provided by the ECB and the other two
by OECD.
It should be noted that in December 2003 the Bank of England changed

the series according to which the inflation target is defined. The current
target is 2% year-on-year measured by the CPI, which is just the name of
the HICP in the UK. As already mentioned, this is the series we shall use
here.

3.2 Euro area inflation

The euro area inflation series 1981(1)—2010(6) can be found in Figure 1 (the
solid curve). In selecting the number of transitions, the original significance
level α0 = 0.5, and the remaining ones equal αq = 0.5αq−1, q ≥ 1. Assuming
p = 0 in (1) , QuickShift and parameter estimation yield the following result:

�δ (t) = 10.74
(0.078)

− 8.90
(0.17)

(1 + exp{−7.54
(−)
(t/T − 0.11

(−)
)})−1

− 2.22
(0.28)

(1 + exp{−17.3
(−)
(t/T − 0.51

(−)
)})−1

− 1.90
(0.15)

(1 + exp{−30
(−)
(t/T − 0.96

(−)
)})−1

+ 1.73
(0.33)

(1 + exp{−30
(−)
(t/T − 0.27

(−)
)})−1

+ 0.99
(0.11)

(1 + exp{−30
(−)
(t/T − 0.67

(−)
)})−1

(4)

The standard deviation estimates are heteroskedasticity-autoregression ro-
bust ones. Since γi and ci, i = 1, ..., 5, are ’estimated’ by QuickShift, no
standard deviation estimates are attached to their estimates.
The maximum value of γ in the grid equals 30, and this limit is reached

three times. The estimated switching mean also appears in Figure 1 (the
dashed curve). The transitions in (4) appear in the order they are selected by
QuickShift. The first transition describes the prolonged decrease in inflation
in the first half of the 1980s and reflects the increased preference for high price
stability in all European countries: note the negative estimate �δ1 = −8.90.
The second one accounts for another downturn in the mid-1990s, whereas
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Figure 1: The euro area year-on-year inflation rate 1981(1)—2010(6) (solid
curve) and the shifting mean from the SM-AR model (4) (dashed curve)

the fourth one describes the increase at the end of the 1980s (�δ4 = +1.73).
The increase following the introduction of the euro is captured by the fifth
transition. The very recent increase in inflation does not affect the estimate
of δ(t), but the subsequent steep decrease does. It is characterised by the
third transition (�δ3 = −1.90).Here our SM-ARmodel only indicates a limited
response to short-term fluctuations in all items inflation that in this case may
be caused by strong movements in energy and food inflation. We therefore
interpret the shifting mean as a measure of ’underlying’ or ’core’ inflation.
The final level of the shifting mean equals


5
j=0
�δj = 0.43.

3.3 UK inflation

The monthly year-on-year UK inflation series from 1981(1) to 2010(6) is
graphed in Figure 2 together with the shifting intercept from an estimated
SM-AR model. The model has p = 0, and the shifting mean has the following
form:
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Figure 2: The UK year-on-year inflation rate 1981(1)—2010(6) (solid curve)
and the shifting mean from the SM-AR model (4) (dashed curve)

δ(t) = 33.45
(1.18)

− 30.27
(1.48)

(1 + exp{−5.72(t/T − 0.01)})−1

−4.70
(0.38)

(1 + exp{−30(t/T − 0.43)})−1

+3.13
(0.53)

(1 + exp{−30(t/T − 0.29)})−1

+1.27
(0.27)

(1 + exp{−30(t/T − 0.87)})−1. (5)

As is seen from (5), four transitions are needed to characterise the shifting
mean of the UK series; see also Figure 2. The role of the first one is to
describe the decrease in inflation in the 1980s. Note the low estimate of
the location parameter: �c1 = 0.01 and the high �δ0 and low �δ1. They are
due to the fact that less than one half of the logistic function is required
to describe the steep early decline in the in-sample shifting mean. The sum�δ0 + �δ1 = 3.18 is the value of the shifting mean when the first transition is
complete, provided that at that time the remaining transition functions still
have value zero. The next two rather steep transitions handle the outburst
in inflation around 1990-92 and the decline following it, and the last one
accounts for the late increase beginning 2005. The final value of the shifting
mean equals


5
j=0
�δj = 2.78, which clearly exceeds the 2% target. It should

be noted, however, that similarly to the estimated SM-AR model for the euro
area inflation, the shifting mean of the UK inflation process only exhibits a
few smooth shifts. It is not affected by transitory movements in headline
inflation, so it can be interpreted as a measure of ’underlying’ inflation.
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3.4 US inflation

The monthly year-on-year US inflation series comprises the period from
1980(1) to 2010(6), and the series is graphed in Figure 3. The series has
a structure similar to its European counterparts. The shifting mean of the
SM-AR model with p = 0 fitted to this series has the following form:

�δ (t) = 12.48
(0.15)

− 9.42
(0.38)

(1 + exp{−17.3
(−)
(t/T − 0.04

(−)
)})−1

− 2.15
(0.24)

(1 + exp{−17.3
(−)
(t/T − 0.41

(−)
)})−1

− 3.01
(0.37)

(1 + exp{−30
(−)
(t/T − 0.95

(−)
)})−1

+ 1.49
(0.33)

(1 + exp{−30
(−)
(t/T − 0.23

(−)
)})−1

+ 1.05
(0.18)

(1 + exp{−30
(−)
(t/T − 0.81

(−)
)})−1.

(6)

Even this model contains five transitions. The first one accounts for the rapid
decrease of the inflation rate in the early 1980s, and the Volcker disinflation
period. As Figure 3 also shows, the mean is shifting upwards again in the
late 1980s before the Gulf War (�δ4 = 1.49). The next downward shift occurs
around 1992—1993. After that the mean remains constant until around 2004
when the inflation rate again increases. The last transition around 2009
(�δ3 = −3.01) corresponds to the steep decrease in the inflation rate that
year. The final level,


5
j=0
�δj = 0.44, is almost exactly the same as for

the euro area model. Overall, the shifting mean is quite similar to the one
estimated for the UK inflation series, except for the latest development. The
locations of the first four transitions match each other quite well, but the
final downturn does not have a counterpart in the UK model.

4 Forecasting inflation with the SM-ARmodel
using exogenous information

4.1 Penalised likelihood

The SM-AR model may not only be used for describing series that are as-
sumed to be strongly influenced by unobserved or insufficiently observed
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Figure 3: The US year-on-year inflation rate 1981(1)—2010(6) (solid curve)
and the shifting mean from the SM-AR model (4) (dashed curve)

events. It may also be used for forecasting. The model offers an excellent
possibility of making use of exogenous information in forecasting, such as in-
flation targets of central banks or inflation expectations of economic agents.
Since central banks with an inflation target aim at keeping inflation close
to the target value, the target contains information that should be incor-
porated, if not in short-term, at least in medium-term forecasts. It should
be noted, howeer, that it may suffer from the same problem as autoregres-
sive models with a linear trend, namely, that extrapolating the deterministic
component may not yield satisfactory short-term forecasts. For very short-
term forecasts, more flexible models than the SM-AR model may therefore
be preferred; see, for example, Clements and Hendry (1999, Chapter 7) for
discussion.
Our idea may be characterised as follows. Assuming T observations, the

log-likelihood function of the SM-AR model has the following general form:

lnLT =

T�
t=1

 t(θ; yt|Ft−1) (7)

where  t(θ; yt|Ft−1), is the log-likelihood for observation t, θ is the vector
of parameters, and Ft−1 is the σ-algebra defined by the past information up
until t− 1. Suppose the annual inflation target of the central bank is x and
that the observations are year-on-year differences of the logarithmic price
level pt, yt = pt − pt−12. Assume that one estimates the SM-AR model from



19
ECB

Working Paper Series No 1363
July 2011

data until time T and wants to forecast τ months ahead from T , for example
τ = 24 or 36. Ideally, from the point of view of the bank, yT+τ = x. Following
the original suggestion of Good and Gaskins (1971), this target may now be
incorporated into the forecast by penalising the likelihood. The penalised
log-likelihood equals

lnLpenT =
T�
t=1

 t(θ; yt|Ft−1)− λ{δ(T + τ)− (1−
p�
j=1

θj)x}2 (8)

where τ is the forecast horizon of interest. The size of the penalty is de-
termined by the nonnegative multiplier λ. When λ → ∞, δ(T + τ) →
(1 − 
p

j θj)x, that is, ET+τyT+τ → x. The smoothly shifting mean, δ(t),
will thus equal the target at time T + τ . More generally, depending on λ,
the forecast which is the conditional mean of yT+τ at time T + τ , lies in a
neighbourhood of the target x.
The role of the penalty component is twofold. First, it is useful in pre-

venting the extrapolated conditional mean from settling on values considered
unrealistic. Second, as already mentioned, the penalised log-likelihood makes
it possible to combine exogenous information about future inflation with what
the model suggests. This bears some resemblance to the recent approach by
Manganelli (2009). The difference is, however, that in his approach, the ex-
ogenous forecast is retained unless there is enough information in the data
to abandon it. In our approach, the sample information always modifies the
exogenous forecast or information in the form of the target, unless λ → ∞
in (8).
It should be noted that if the SM-AR model is used simply for describing

the in-sample behaviour of inflation, no penalty on the log-likelihood should
be imposed. There is no contradiction, because time series models can be
used for both data description and forecasting, and the estimated models for
these two purposes need not be identical.
As already mentioned, it is assumed in equation (8) that yt is directly the

year-on-year inflation rate to be forecast, yt = pt− pt−12. One may, however,
model the monthly inflation rate ut = pt−pt−1 and forecast the year-on-year
inflation from the monthly SM-AR model. In this case, yt =


11
s=0 ut−s and,

accordingly, deviations of

11

s=0 ET+τ−suT+τ−s from x are being penalized.
Thus,

lnLpenT =

T�
t=1

 t(θ; yt|Ft−1)− λ{
11�
s=0

δ(T + τ − s)− (1−
p�
j=1

θj)x}2.

In this paper, however, we only report results obtained using models for the
year-on-year inflation series. Since the Federal Reserve does not have an



20
ECB
Working Paper Series No 1363
July 2011

inflation target, we exclude the US inflation from the forecasting exercise.
We include the euro area, as the ECB provides an explicit formulation for
its aim of price stability, and the UK since the Bank of England is one of the
inflation targeting central banks.
It may be argued that the ECB’s definition of price stability (the year-on-

year inflation ’below but close to 2%’) is a target range rather than a point
target. The penalised likelihood method still applies, however. In that case x
may be taken to represent the mid-point of the range and that the size of the
penalty is slightly larger than would be the case if x were a straightforward
target. Strictly speaking, this idea is valid only when upward deviations from
the range are equally undesirable as downward ones. If this is not the case,
one has to construct asymmetric penalty functions. Note that in (8) the loss
function of the forecaster is assumed to be quadratic. Other loss functions are
possible as well. For example, Boinet and Martin (2005) and Orphanides and
Wieland (2000), among others, consider nonlinear loss functions that they
argue are applicable to central banks with an inflation target. According to
the authors, these functions resemble a target zone function in that they are
flat in a neighbourhood of the target. Note, however, that nonlinear loss
functions imply numerical estimation algorithms, as the estimation problem
no longer has an analytic solution.
It may be mentioned that information about the target could also be

used in the analysis by applying Bayesian techniques. One would then have
to choose a prior distribution for the target instead of choosing a value for the
penalty term λ. Nevertheless, in the case of the SM-AR model the classical
framework is well suited for the purpose of incorporating this information in
the forecast.

4.2 Modification of penalised likelihood

We are going to make use of the following slight modification of the penalised
likelihood:

lnLpenT =
T�
t=1

 t(θ; yt|Ft−1)− λ
T+τ�
t=T+1

ρT+τ−t{δ(t)− (1−
p�
j=1

θj)x}2 (9)

where 0 < ρ < 1. The penalty now involves all points of time from T + 1
to T + τ . The weights are geometrically decaying (other weighting schemes
could be possible as well) from T + τ backwards. The geometrically (into
the past) declining weights represent the idea that the forecast inflation path
will gradually approach the target. But then, a rapid decay, ρ = 0.8, say,
would give negligible weights to most observations in the penalty component
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preceding T+τ , unless λ is very large. Even then, the first values following T
would be negligible weights compared to the weight of the observation T + τ .
In that case, the results would be similar to the ones obtained by maximising
(8).
We may also construct a slightly different modification by defining the

standard weighted log-likelihood function as follows:

lnLpenT = c− {(T − p)/2} ln σ2 − (1/2σ2)
T�

t=p+1

(yt − δ(t)−
p�
j=1

θjyt−j)2

−λ(1/2σ2)

T+τ�
t=T+1

ρT+τ−t(y∗t − δ(t)−
p�
j=1

θjy
∗
t−j)

2 (10)

where
y∗T+k = (1− k/τ)yT + (k/τ)(1− k/τ)x, k = 1, ..., τ (11)

for t = T + 1, ..., T + τ . In this case there is a set of artificial observations
(11) obtained by linear interpolation between the last observation and the
target. The previous log-likelihood (9) does not contain such observations.
The forecast of yT+τ equals

estE(yT+τ |x) = (1−
p�
j=1

�θjLj)−1�δ(T + τ).

4.2.1 Parameter constancy test

When the time series are extended to contain the artificial observations
y∗T+1, ..., y

∗
T+τ , the question is how to modify the linearity test. This can

be done by using the weighted auxiliary regressions whose weights originate
from equation (10). This is equivalent to assuming that there is heteroskedas-
ticity of known form in the errors, and that it is accounted for in the test.
The auxiliary regression based on the third-order Taylor expansion has the
form; see, for example, Teräsvirta (1998):

ỹt = δ0 + δ1t̃
∗ + δ2t̃

∗2 + δ3t̃
∗3 + w�

tβ + ε∗t (12)

ỹt = yt for t = 1, ..., T ; yt = ωty
∗
t for t = T + 1, . . . , T + τ , where ωt =�

λρT+τ−t for t = T +1, . . . , T +τ , and y∗t is defined as in (11). Furthermore,
t̃∗ = t/(T + τ) for t = 1, ..., t; t̃∗ = ωtt/(T + τ) for t = T + 1, ..., T + t, and,
finally, wt = (ỹt−1, . . . , ỹt−p)�. The QuickShift test sequence is carried out in
the same way as in the case where the idea is merely to describe inflation,
not to forecast it.
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Another possibility is not to rerun the test sequence but rather retain the
same number of shifts as is obtained by normal modelling of observations
y1, ..., yT . In forecasting, the parameters of this model would simply be re-
estimated by penalised likelihood, and the estimated shifting mean would
then be used for forecasting. This short-cut would save computer time, but
in our simulations we have respecified the model for each realisation.

4.2.2 Other methods for forecasting inflation

There is a large literature on forecasting inflation using time-varying para-
meter models. For a general discussion of time-varying parameter models,
see Teräsvirta, Tjøstheim and Granger (2010, Sections 3.10—11). In the fol-
lowing, we shall only highlight a few papers containing different types of
time-varying parameter models that have been used for forecasting inflation.
Stock and Watson (2007) found that a constant parameter MA(1) for

the US inflation based on a rolling estimation window is a good approxima-
tion of their unobserved component model with a trend-cycle decomposition
described in Section 2.3. They also reported that the rolling MA(1) per-
formed very well in comparison with the other models in terms of forecast-
ing up to four quarters ahead, while the AR model was slightly better for
eight-quarters-ahead forecasts. Nevertheless, the rolling MA(1) model was
still better than many other models they considered for that horizon. Ang,
Bekaert and Wei (2007) compared term structure models, including nonlin-
ear regime-switching specifications, with ARIMA models, Phillips curve type
models and survey based forecasts, and found that surveys provided the most
accurate forecasts for US inflation, whereas the term structure specifications
fared relatively poorly in terms of one-quarter-ahead forecasts for different
sample periods until 2002. Koop and Potter (2007) proposed a multiple-
regime model in which the duration of a regime is generated from a Poisson
process. They found that for US inflation a time-varying parameter model
with a change-point provided somewhat better forecasts than their model
for one-quarter-ahead forecasts over an evaluation period of two years (2004-
2005). None of those papers, except for Stock and Watson (2007) considered
24-months-ahead forecasts, which will be the forecast horizon in our empirical
analysis. Furthermore, none of them is designed for incorporating exogenous
information into forecasts from the model. This feature separates our model
with the others and is a key advantage of our methodology.
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4.3 Monte Carlo experiments

4.3.1 The data-generating process

In order to illustrate forecasting with the SM-AR model in the presence of
exogenous information, we conduct a small simulation experiment. The data
are generated from models with and without autoregressive structure. The
DGP has the following form:

yt = δ0 +

3�
i=1

δiG(γi, ci, t/(T + τ)) +w�
tφ+ εt (13)

t = 1, ..., T, where (δ0, δ1, δ2, δ3) = (0.9, 0.2, 0.3,−0.4) with

3

i=0 δi = 1. This
means that the final value of the shifting mean equals unity. The transition
functions are logistic functions of time as before:

G(γi, ci, t/(T + τ)) = (1 + exp{−γ(t/T − ci)})−1, γi > 0 (14)

with (γi, ci), i = 1, 2, 3, given by the pairs (2, 0.3), (6, 0.5) and (4, 0.9).
Furthermore, either wt = (yt−1, yt−2)�, and φ = (0.5, 0.3)� or φ = 0 (no
autoregressive structure). In each realization, T + τ observations are gen-
erated, where T is the size of the estimation sample and τ the forecasting
horizon. The artificial observations y∗T+k, k = 1, ..., τ , are defined as in (11).
Time is rescaled into the zero-one interval such that T + τ now corresponds
to value one. Two sample sizes, T = 120, 240, are considered. The target
x = 2, 4, the forecast horizon τ = 36, and the discount factor � = 0.9. The
number of replications equals 1000, and six different penalties are applied.
The quantity reported for each replication is the point forecast. The model
selection by QuickShift is performed for each replication. In these simulations,
the initial significance level α0 = 0.5 and ν = 0.5.
The target is higher than the final value of the logistic function. The

greater the distance between the two, the higher the probability of obtaining a
bimodal density forecast, ceteris paribus. A bimodal density results when the
information in the time series as conveyed by the model sufficiently strongly
deviates from the information provided by the target. Conversely, if the
target and the final value of the shifting mean are close to each other, the
density is more likely to be unimodal. The shape of the density also depends
on the variance of the error distribution and the penalty. If the error variance
is small and the penalty high, a conflict and thus a bimodal density is more
likely than it is when the opposite is true. When the penalty approaches
zero, the density becomes unimodal and symmetric.
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Figure 4: Density forecasts 36 periods ahead with target x = 2 and various
penalties, T = 120. The penalty increases from left to right and from the
first row to the second

4.3.2 Results

We shall only report results of the experiment with p = 0 and x = 2 because
they are already sufficiently informative. The results for T = 120 are shown in
Figure 4 by the estimated density function based on the 1000 point forecasts.
As a whole, the results are quite predictable. When the penalty is small as it
is in the top-row figures to the left, the density is bimodal but the second peak
is relatively small. The mode of the distribution is slightly greater than one,
the final value of the shifting mean, and there is a secondary peak somewhat
to the right of the target. This is because even a small positive penalty
already shifts the whole density to the right. When the penalty is increased,
the leftmost peak decreases and eventually disappears as the forecasts on the
average approach the target. In general, as already mentioned, the density
is bimodal when the target and the shifting mean at the end of the sample
are sufficiently different from each other, and the penalty is neither very
small nor very large. Finally, when the penalty becomes large, the forecast
density first becomes unimodal and then degenerate at the target value x
when λ→∞.
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Figure 5: Density forecasts 36 periods ahead with target x = 2 and various
penalties, T = 240. The penalty increases from left to right and from the
first row to the second

Figure 5 contains results from the same experiment with T = 240. In this
case, the sample information weighs more than previously. The density with
the smallest penalty is close to unimodal, and the peak in the vicinity of
unity disappears later than in the preceding simulation. A heavier penalty
is now needed to eliminate it.

5 Application to forecasting inflation

5.1 Constructing point and density forecasts

We apply the SM-AR model and the penalised likelihood approach to fore-
casting both the euro area and the UK year-on-year inflation 24 months
ahead for the period 2003(1)—2010(6). This period is a very relevant one for
the euro area, as it begins shortly after the creation of the European Central
Bank (ECB) and the introduction of the euro. ECB is aiming to achieve price
stability at ’below but close to 2%’ in terms of year-on-year inflation. For
simplicity, we use a value of 2% for year-on-year inflation for the medium-
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term horizon when forecasting with the SM-AR model. The inflation target
of Bank of England is 2%, and we apply it in our forecasting exercise. The
penalty term λ determines the weight of the external information in (8). It
reflects the forecaster’s subjective assessment of the seriousness of the Bank
and chances of success of its policies when it comes to bringing the inflation
rate close to the target or holding it there.
In the penalised log-likelihood (8) the penalty is a quadratic function

of the deviation from the 2% target. This does not exactly correspond to
’below but close to 2%’ of ECB but serves as an approximation. As already
mentioned, asymmetric penalty functions would be an alternative but are not
considered here. A case could be made for a point target value somewhat
below 2%, however, in particular as the penalty function is symmetric around
the target.
The last observation of the euro area inflation series is 2010(6), and the

forecast horizon equals 24 months. Forecasting starts in the beginning of 2001
and constinues till the end of the series. We report both point and density
forecasts. The latter are obtained by a block bootstrap with a varying block
size; see Politis and Romano (1994) and Politis and White (2004).

1. Specify and estimate the SM-AR model for the inflation series using 24
artificial observations in addition to the sample information. Obtain
the point forecast.

2. Bootstrap the residuals of this model using the block bootstrap and
generate a new set of T observations using the estimated model. Add
the artificial observations. Repeat Step 1.

3. Repeat Step 2 B times.

4. Obtain the density forecast from the B point forecasts using kernel
estimation (Teräsvirta et al. 2010, Section 13.1).

The SM-ARmodel is first specified and estimated using observations until
2001(1), so the first forecast will be for January 2003, as already indicated.
The next observation is then added to the series, and the model is respecified
and re-estimated. Respecification comprises selecting the number of transi-
tions by QuickShift. This model is used for forecasting February 2003. New
realisations are generated by a block bootstrap that involves respecification
and re-estimation of the model for each of the 1000 bootstrap (B = 1000)
replications. This is the number of replications behind each forecast density.
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Variable Model RMSFE
Specification Euro area UK
πyoy SM-AR(λ) λ

1/9 0.893 0.888
3/7 0.855 0.851
3/2 0.894 0.889
9 0.915 0.910

πyoy AR(p) 0.981 0.797
MS-AR 1.090 2.913
2% forecast 0.907 1.747

Table 1: The root mean square error of 24-month forecasts of the Euro area
and the UK inflation from the SM-AR model with various penalties, the
linear AR(p),p selected by the Rissanen-Schwarz information criterion, and
the first-order Markov-switching AR model. Forecasting period: 2003(1)—
2010(6).

5.2 Point forecasts

Table 1 contains the root mean square forecast errors (RMSFE) of the point
forecasts 24 months ahead from the SM-AR model with four different penal-
ties for both the euro area and the UK inflation forecasts for the period
2003(1)—2010(6). It also contains the RMSFE of the forecasts of three bench-
mark models, including the linear AR model based on the same transforma-
tion as the SM-AR model (i.e., year-on-year inflation, πyoy), the target or
’quantitative aim of price stability’ itself (a constant 2% forecast for every
period) and a first-order Markov-switching AR (MS-AR) model. The MS-
AR model is parameterised as in Tyssedal and Tjøstheim (1988) with the
possible extension that the error variance may switch as well. As usual, its
parameters are estimated using the EM algorithm of Dempster, Laird and
Rubin (1977).
The results in Table 1 show that in forecasting euro area inflation the SM-

AR model outperforms the benchmark models considered here. For the euro
area inflation forecasts, the size of the penalty does not make a big difference.
The RMSFE is larger for the AR than for the SM-AR model regardless of
the size of the penalty. The Markov-switching AR (MS-AR) model does
not perform well either. An obvious reason for the good performance of our
model is that, with the exception of last two years, euro area year-on-year
inflation has remained close to 2%. This is also seen from the fact that the
RMSFE of the constant 2% forecasts is not much inferior to that of our
SM-AR model forecasts.
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The situation is different for the UK inflation point forecasts. In terms of
the RMSFE, the AR(p) model is the best performer, whereas the forecasts
from the MS-ARmodel are very inaccurate.The UK inflation has been clearly
above the target most of the time since the end of 2007. The AR model has
been able to forecast these developments rather well, whereas giving weight
to the target has not been helpful. This is also obvious from the fact that the
pure target forecasts are quite inaccurate. If the years 2008—2010 are excluded
from the comparison, the SM-AR model generates the most accurate point
forecasts.5 The size of the penalty does not matter much in the sense that
the lightest penalty, λ = 1/99, already gives too much weight to the target.
Nevertheless, investing some trust in the target when forecasting before the
year 2006 would have been the right thing to do. A real-time forecaster would
probably have adjusted the size of the penalty during the forecasting period
according to his or her judgment, but in this experiment it has remained
constant throughout the period.

5.3 Forecast densities

5.3.1 Euro area inflation

Forecast densities of the 24-month forecasts for euro area inflation for the
period 2003(1)—2010(6) can be found in Figure 6. The figure contains the
50%, 70% and 90% highest density regions (HDR) for λ = 1/99, 1/9, 3/7
and 3/2. This implies the following relative weights for the penalty: 0.01,
0.1, 0.3, and 0.5. An HDR is the set of intervals within which the density is
higher than anywhere else, see Hyndman (1996) or Teräsvirta et al. (2010,
Section 15.2). The 90% confidence intervals of the linear AR model are also
presented. Since the corresponding forecast densities are symmetric around
the mean, they are comparable to the 90% HDR from the SM-AR model.
It is seen from Figure 6 that for the lowest penalty, λ = 1/99, the forecast

density is bimodal until the end of 2006 and then unimodal up to 2010. At
the end, this density is bimodal again, with one local model close to 4% and
another one in the vicinity of the assumed target value 2%. This reflects the
fact that the euro area inflation was high, around 4%, in mid-2008 when the
last 24-month forecasts were made. The next panel with λ = 1/9 shows how
the peak around 4% is flattened out and moved close to the 2% mark when
the penalty is increased from 1/99 to 1/9. Increasing it further decreases the
variance of the distribution even more and concentrates the probability mass
around 2%. When inflation is close to the assumed target and the penalty is
low (λ ≤ 1/9), the 50% and 70% forecast densities cover the observed values

5Results are not reported to save space but are available upon request.
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Figure 6: 50%, 70% and 90% highest density regions of 24-month density
forecasts of euro area inflation, 2003(1)—2010(6) for λ = 1/100 (upper left
panel), λ = 1/10 (upper right panel), λ = 3/7 (lower left panel), and λ = 3/2
(lower right panel).
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quite well until mid-2007, after which the peak values in 2008 and the trough
points in 2009 fall outside even the 90% HDRs.
Figure 6 also contains the point forecasts from the linear AR model and

their 90% confidence limits. The year-on-year inflation remains inside the
band defined by these limits until mid-2007. After this, similarly to the
aforementioned HDRs, the band contains neither the high-inflation values
until mid-2008 nor the low-inflation ones in 2009. Furthermore, it fails to
cover the still low monthly year-on-year values in 2010.

5.3.2 UK inflation

As already mentioned, the Bank of England has an inflation target of 2%.
The forecast horizon is again 24 months and the last observation to be fore-
cast is 2010(6). The density forecasts for the year-on-year inflation appear
in Figure 7. The four penalties are the same as in the euro area forecasts.
The point forecasts from the autoregressive model are upward biased in the
beginning of the period due to the fact that before 2005 the unconditional
mean of the UK inflation process is higher than the inflation rate. They be-
come more accurate when inflation picks up. The 90% intervals of the linear
AR forecasts contain the realised inflation most of the time but fail to do
that when inflation is peaking in 2008.
The forecast densities from the SM-AR model for the smallest penalty,

λ = 1/99, are mostly unimodal and widen considerably around the end of
2007. The mode of the density remains below the target. This is due to the
fact that when forecasting begins, the estimated conditional mean is clearly
below 2%, which can also be seen from Figure 2. It stays there for a long
time, because the inflation rate remains very low until early 2005. This
explains why the point forecasts from the SM-AR model are less accurate on
average than the ones from the linear AR model. Interestingly, when there
is enough evidence about the rise in inflation by early 2006, the 24-month
density forecasts made for the months of 2008 are skewed with a long upper
tail. The 90% HDRs in Figure 7 cover the whole inflation series including the
peak in 2008. When λ = 1/9, this rise in the inflation rate leads to a bimodal
or even trimodal forecast densities such that the upper local mode is close
to the target, whereas the lower one still reflects the period of low inflation
before 2006. In this case, the 90% HDRs no longer cover the 2008 inflation
rates. Further increases of the penalty concentrate the density around the
2% target throughout. When λ = 3/7, weak bi- or multimodality remains,
but it almost disappears when λ = 3/2. In that case, the lower tail of the
density is longer than the upper one.
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Figure 7: 50%, 70% and 90% highest density regions of 24-month density
forecasts of UK inflation, 2003(1)—2010(6) for λ = 1/100 (upper left panel),
λ = 1/10 (upper right panel), λ = 3/7 (lower left panel), and λ = 3/2 (lower
right panel).
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6 Conclusions

In this work we propose a new method for medium-term forecasting incorpo-
rating exogenous information based on a flexible nonstationary autoregres-
sive model, the shifting-mean autoregressive model. In forecasting inflation,
a central bank inflation target, if it exists, is a natural example of such exoge-
nous information. Forecasting is carried out using the penalised likelihood
in the estimation of the parameters of the model. Another advantage of
the shifting-mean autoregressive model worth mentioning is that it is also
suitable for describing characteristic features of time series of inflation.
The inflation target is an example of a piece of deterministic a priori

information. It may also be possible to handle stochastic exogenous informa-
tion, for example another point forecast. If the uncertainty of this forecast is
assumed to be known, that is, if the forecast is a draw from a known probabil-
ity distribution, this uncertainty can be taken into account when generating
density forecasts with the technique described in the paper. That has not,
however, been done here.
There is also the possibility of making the model multivariate by includ-

ing stochastic regressors. They may appear linearly in the usual way or
even nonlinearly as arguments of logistic functions. In the latter case they
could be included in the pool from which QuickShift selects the appropriate
variables for the model. It would also be possible to use other techniques
than QuickShift to select the components; see Kock and Teräsvirta (2011) for
examples. Such extensions are, however, left for future work.



33
ECB

Working Paper Series No 1363
July 2011

References

Amemiya, T.: 1985, Advanced Econometrics, Blackwell, Oxford.

Ang, A., Bekaert, G. and Wei, M.: 2007, Do macro variables, asset markets,
or surveys forecast inflation better?, Journal of Monetary Economics
54, 1163—1212.

Beechey, M. and Österholm, P.: 2010, Forecasting inflation in an inflation-
targeting regime: A role for informative steady-state priors, Interna-
tional Journal of Forecasting 26, 248—264.

Benedetti, J. K.: 1977, On the nonparametric estimation of regression func-
tions, Journal of the Royal Statistical Society, Series B 39, 248—253.

Boinet, V. and Martin, C.: 2005, Targets, zones and asymmetries: A flexible
nonlinear models of recent UK monetary policy, Working paper, Brunel
University.

Clark, T. E.: 2001, Comparing measures of core inflation, Economic Review,
Federal Reserve Bank of Kansas.

Clements, M. P. and Hendry, D. F.: 1999, Forecasting Non-stationary Eco-
nomic Time Series, MIT Press, Cambridge,Massechusetts.

Cogley, T.: 2002, A simple adaptive measure of core inflation, Journal of
Money, Credit and Banking 34, 94—113.

Cogley, T., Primiceri, G. E. and Sargent, T. J.: 2010, Inflation gap persis-
tence in the US, American Economic Review: Macroeconomics 2, 43—69.

Cogley, T. and Sbordone, A. M.: 2008, Trend inflation, indexation, and
inflation persistence in the New Keynesian Phillips curve, American
Economic Review 98, 2101—2126.

Cristadoro, R., Forni, M., Reichlin, L. and Veronese, G.: 2005, A core infla-
tion indicator for the euro area, Journal of Money, Credit and Banking
37, 539—560.

Cybenko, G.: 1989, Approximation by superposition of sigmoidal functions,
Mathematics of Control, Signals, and Systems 2, 303—314.

Davidson, J.: 2000, Econometric Theory, Blackwell, Oxford.



34
ECB
Working Paper Series No 1363
July 2011

Dempster, A. P., Laird, N. M. and Rubin, D. B.: 1977, Maximum likeli-
hood from incomplete data via the EM algorithm, Journal of the Royal
Statistical Society, Series B, 39, 1—38.

Doornik, J. A.: 2008, Encompassing and automated model selection, Oxford
Bulletin of Economics and Statistics 70, 915—925.

Doornik, J. A.: 2009, Autometrics, in J. L. Castle and N. Shephard (eds), The
Methodology and Practice of Econometrics, Oxford University Press,
Oxford, pp. 88—121.

Funahashi, K.: 1989, On the approximate realization of continuous mappings
by neural networks, Neural Networks 2, 183—192.

González, A. and Teräsvirta, T.: 2008, Modelling autoregressive processes
with a shifting mean, Studies in Nonlinear Dynamics and Econometrics
12, No. 1, Article 1.

Good, I. J. and Gaskins, R. A.: 1971, Nonparametric roughness penalties for
probability densities, Biometrika 58, 255—277.

Hornik, K., Stinchcombe, M. and White, H.: 1989, Multi-layer feedforward
networks are universal approximators, Neural Networks 2, 359—366.

Huang, J., Horowitz, J. L. and Ma, S.: 2008, Asymptotic properties of bridge
estimators in sparse high-dimensional regression models, Annals of Sta-
tistics 36, 587—613.

Hyndman, R. J.: 1996, Computing and graphing highest density regions,
American Statistician 50, 120—126.

Kock, A. B. and Teräsvirta, T.: 2011, Nonlinear forecasting of macroeco-
nomic variables using automated model selection techniques, CREATES
Research Paper, Aarhus University.

Koop, G. and Potter, S. M.: 2007, Estimation and forecasting in models with
multiple breaks, Review of Economic Studies 74, 763—789.

Kozicki, S. and Tinsley, P. A.: 2005, Permanent and transitory policy shocks
in an empirical macro model with asymmetric information, Journal of
Economic Dynamics and Control 29, 1985—2015.

Kozicki, S. and Tinsley, P. A.: 2006, Survey-based estimates of the term
structure of expected U.S. inflation, Working Paper 2006-46, Bank of
Canada.



35
ECB

Working Paper Series No 1363
July 2011

Lee, T.-H., White, H. and Granger, C. W. J.: 1993, Testing for neglected
nonlinearity in time series models: A comparison of neural network
methods and alternative tests, Journal of Econometrics 56, 269—290.

Lendvai, J.: 2006, Inflation dynamics and regime shifts, ECB Working Paper
684, European Central Bank.

Leser, C. E. V.: 1961, A simple method of trend construction, Journal of the
Royal Statistical Society, Series B, 23, 91—107.

Lin, C.-F. J. and Teräsvirta, T.: 1994, Testing the constancy of regression pa-
rameters against continuous structural change, Journal of Econometrics
62, 211—228.

Manganelli, S.: 2009, Forecasting with judgment, Journal of Business and
Economic Statistics 27, 553—563.

Orphanides, A. and Wieland, V.: 2000, Inflation zone targeting, European
Economic Review 44, 1351—1387.

Orphanides, A. andWilliams, J. C.: 2005, Inflation targeting, in B. Bernanke
and M. Woodford (eds), Imperfect Knowledge, Inflation Expectations
and Monetary Policy, University of Chicago Press.

Pesaran, M. H., Pettenuzzo, D. and Timmermann, A.: 2006, Forecasting
time series subject to multiple structural breaks, Review of Economic
Studies 73, 1057—1084.

Politis, D. N. and Romano, J. P.: 1994, Limit theorems for weakly dependent
hilbert space valued random variables with application to the stationary
bootstrap, Statistica Sinica 4, 461—476.

Politis, D. N. and White, H.: 2004, Automatic block-length selection for the
dependent bootstrap, Econometric Reviews 23, 53—70.

Priestley, M. B. and Chao, M. T.: 1972, Non-parametric function fitting,
Journal of the Royal Statistical Society, Series B 34, 385—392.

Schorfheide, F.: 2005, Learning and monetary policy shifts, Review of Eco-
nomic Dynamics 8, 392—419.

Sims, C. A. and Zha, T.: 2006, Were there regime switches in U.S. monetary
policy?, American Economic Review 96, 54—81.



36
ECB
Working Paper Series No 1363
July 2011

Stock, J. H. andWatson, M. W.: 2007, Why has U.S. inflation become harder
to forecast?, Journal of Money, Credit and Banking 39, 3—33.

Teräsvirta, T.: 1998, Modeling economic relationships with smooth transi-
tion regressions, in A. Ullah and D. E. Giles (eds), Handbook of Applied
Economic Statistics, Dekker, New York, pp. 507—552.

Teräsvirta, T., Tjøstheim, D. and Granger, C. W. J.: 2010, Modelling Non-
linear Economic Time Series, Oxford University Press, Oxford.

Tyssedal, J. S. and Tjøstheim, D.: 1988, An autoregressive model with sud-
denly changing parameters, Applied Statistics 37, 353—369.

White, H.: 2006, Approximate nonlinear forecasting methods, in G. Elliott,
C. W. J. Granger and A. Timmermann (eds), Handbook of Economic
Forecasting, Vol. 1, Elsevier, Amsterdam, pp. 459—512.

Appendix

A Selecting sigmoids using QuickShift

We shall give a brief description of QuickShift. QuickNet, its more general
version, is used for specifying the number of hidden units in a single hidden-
layer feedforward artificial neural network model. The user first fixes the
maximum number of ’hidden units’, corresponding to transition functions
in this work, and selects the units from a large set of predetermined can-
didate functions. The same is true for QuickShift. The maximum number
of transition functions q̄ can be set to equal any value such that the model
can be estimated, given the sample size. Here, q̄ = 10. The set of candidate
functions is defined by a fixed grid for γ and c. In our applications, the grid
will be defined as ΘN = {(ΓNγ × CNc)} with ΓNγ = {γs : γs = κγs−1, s =
1, . . . , Nγ,κ ∈ (0, 1)} and CNc = {cs : cs = cs−1+(1/Nc), s = 1, . . . , Nc}. The
starting-values are γ0 = 0.01 and c0 = 0.01. The final values are γN = 30
and cN = 0.99, and, furthermore Nc = 100 and Nγ = 100. This defines a set
of 10000 different transition functions. Since γ is not a scale-free parameter,
it is divided by the ’standard deviation’ of t/T when constructing the grid.
The idea behind all this is to transform the nonlinear model selection and
estimation problem into a linear one.
Given q̄ and ΘN , QuickShift consists of the following steps:

1. Estimate model (1) assuming δ(t) = δ0, save the residuals ε̂t,0.
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2. After selecting q − 1 transitions, q > 1, choose the transition function
that in absolute terms has the largest correlation with ε̂t,q−1 that is, let

(γ̂, ĉ)q = argmax(γs,cs)∈ΘN [r(g(γs, cs, t/T ), ε̂q−1,t)]
2

where r(g(γs, cs, t/T ), ε̂q−1,t) is the sample correlation between g(γs, cs,
t/T ) and

ε̂q−1,t = yt − δ̂0 −
q−1�
i=1

δ̂ig(γ̂i, ĉi, t/T )−
p�
j=1

�φjyt−j.
Test the model with q − 1 transitions against its counterpart with q
transitions; for details see González and Teräsvirta (2008). If the null
hypothesis is rejected, proceed to Step 3. In order to have the overall
significance level of the sequence under control as well as to favour
parsimony, the significance level αq of an individual test is gradually
decreased such that αq = ναq−1, q = 1, 2, ..., where 0 < ν < 1. The
user determines α0 and ν.

3. Given (γ̂, ĉ)q, obtain the estimates (δ̂0, . . . , δ̂q, �φ1, . . . , �φq)� by ordinary
least squares. Go back to Step 2.

4. If every null hypothesis is rejected, stop at q = q̄. The choice of q̄, the
maximum number of transitions, is controlled by the user and depends
on the modelling problem at hand.

The test used for selecting q is the Taylor expansion based test by Lin
and Teräsvirta (1994). Other choices, such as the Neural Network test by
Lee, White and Granger (1993), are possible, and one can also apply model
selection criteria to this selection problem. In the simulations reported in
González and Teräsvirta (2008), the model selection criteria they investigated
performed less well than the sequential tests and will not be used here.

B Asymptotic normality of the maximum like-
lihood estimators of the SM-AR model

Let θ = (φ�, δ�,γ �, c�)� ∈ Θ ⊂ R3q+1 where φ = (φ1, ...,φp)� is a p× 1 vector,
δ = (δ0, δ1, ..., δq)

� is a (q + 1) × 1 vector, and γ = (γ1, ..., γq)
� and c =

(c1, ..., cq)
� are q× 1 vectors. Let θ0 = (δ�0,γ �0, c�0)� be the corresponding true

parameter vector. The model for yt is

yt = δ(t) +

p�
j=1

φjyt−j + εt (15)
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where εt ∼ iid(0,σ2). Furthermore, δ(t) is a bounded positive-valued function
of time:

δ(t) = δ0 +

q�
i=1

δig(γi, ci, t/T ) (16)

such that δi, i = 1, . . . , q, are parameters and g(γi, ci, t/T ), i = 1, . . . , q, are
logistic transition functions:

g(γj, cj, t/T ) = gjt =
�
1 + exp{−γj(t/T − ci)}

�−1
, γj > 0 (17)

for j = 1, ..., q, where T is the number of observations. Furthermore, assume
c1 < c2 < ... < cq. The value of δ(t) thus changes (possibly nonmonotoni-
cally) from δ0 to δ0 +


q
i=1 δi as a function of t. The definition (17) implies

that g(γj, cj, t/T ) and thus δ(t) is continuous and infinitely many times dif-
ferentiable in θ. Rescaled time in the argument of g(γj, cj, t/T ) leaves the
relative locations of transitions intact as T → ∞. We make the following
assumptions:
Assumption A1. The parameter space Θ is an open subset of R3q+p+1

and θ0 is an interior point of Θ.
Assumption A2. The roots of the lag polynomial 1−
p

j=1 φjz
j lie outside

the unit circle, and

∞

j=0 |θj| <∞ in

(1−
p�
j=1

φjz
j)−1 =

∞�
j=0

θjz
j.

The quasi log-likelihood function (T observations) of the model is defined
as follows:

LT (θ, ε) =
T�
t=1

 (θ,εt) (18)

where

 (θ,εt) = k − (1/2) lnσ2 +
ε2t
2σ2

. (19)

Lemma A.1. The (3q + p+ 1)× 1 score function ∂ (θ,εt)/∂θ for obser-
vation t has the form

∂ (θ,εt)/∂θ = − εt
σ2

∂εt
∂θ

=
εt
σ2
gt(θ)
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where gt(θ)=(y�t−1,g
�
δt,g

�
γt,g

�
ct)
�. The blocks of gt(θ) are

yt−1 = ∂gt/∂φ = (yt−1, ..., yt−p)�

gδt = ∂gt/∂δ =(1, g1t, ..., gqt)
�

gγt = ∂gt/∂γ =(gγ1t, ..., gγqt)
�

gct = ∂gt/∂c =(gc1t, ..., gcqt)
�

where gγjt = δjgjt(1−gjt)(t/T−cj) and gcjt = −γjδjgjt(1−gjt) for j = 1, ..., q.
Lemma A.2. The Hessian ∂2 (θ,εt)/∂θ∂θ

� for observation t equals

∂2 (θ,εt)/∂θ∂θ
� = − 1

σ2
{gt(θ)g�t(θ) + εt(θ)

∂2gt(θ)

∂θ∂θ�
}

where

gt(θ)gt(θ)
� =

⎡⎢⎢⎣
Mφφt Mφδt Mφγt Mφct

Mδδt Mδγt Mδct

Mγγt Mγct

Mcct

⎤⎥⎥⎦
with

Mφφt = yt−1y�t−1, Mφαt = yt−1g�φαt, α = δ, γ, c

Mδδt = gδtg
�
δt, Mδαt = gδtg

�
αt + εtdiag(gδα1t, ..., gδαqt), α = γ, c

Mγγt = gγtg
�
αt + εtdiag(gγα1t, ..., gγαqt), α = γ, c

Mcct = gctg
�
ct + εtdiag(gcc1t, ..., gccqt)

and

gγγjt = δjgjt(1− gjt)(1− 2gjt)(t∗ − cj)2
gccjt = δjγ

2
jgjt(1− gjt)(1− 2gjt)

gγδjt = gjt(1− gjt)(t∗ − cj)
gcδjt = −γjgjt(1− gjt)
gγcjt = −δjγjgjt(1− gjt)(1− 2gjt)(t∗ − cj)

for j = 1, ..., q.

Lemma A.3. The probability limit

Mφφ = plimT→∞(1/T )
T�
t=1

Mφφt = limT→∞(1/T )
T�
t=1

δ∗(t−1)δ∗(t−1)�+cov(y∗t )
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where y∗t = (y
∗
t , y

∗
t−1, ..., y

∗
t−p+1)

� with y∗t = yt − δ(t), and

δ∗(t) = (δ(t), ..., δ(t− p+ 1))�.

Proof. Consider

yt = (1−
p�
j=1

φjL
j)−1δ(t) + (1−

p�
j=1

φjL
j)−1εt

= δ∗(t) +
∞�
j=0

θjεt−j (20)

where δ∗(t) =

∞

j=0 θjδ(t− j) and θ0 = 1. Then

|δ∗(t)| ≤
∞�
j=0

|θj||δ(t− j)| ≤ δmax

∞�
j=0

|θj|.

This implies that δ∗(t) and, consequently, δ∗2(t), are finite.
Next, consider

y2t = (δ∗(t) +
∞�
j=0

θjεt−j)2

= δ∗2(t) + 2δ∗(t)
∞�
j=0

θjεt−j + (
∞�
j=0

θjεt−j)2

where E(

∞

j=0 θjεt−j)
2 = σ2


∞
j=0 θ

2
j . Then

plimT→∞(1/T )(
∞�
j=0

θjεt−j)2 = σ2
∞�
j=0

θ2j

plimT→∞(1/T ){
∞�
t=0

δ∗(t)(
∞�
j=0

θjεt−j)} = 0

and

plimT→∞(1/T )
∞�
t=0

y2t = limT→∞(1/T )
∞�
t=0

δ∗2(t) + σ2
∞�
j=0

θ2j (21)

by Kolmogorov’s LLN 1. The limit in (21) is finite since all elements in the
first sum are O(1) and by Assumption A2,


∞
j=0 θ

2
j <∞.
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Correspondingly,

plimT→∞(1/T )
∞�
t=0

ytyt−j = limT→∞(1/T )
∞�
t=0

δ∗(t)δ∗(t− j) + σ2
∞�
k=1

θkθk+j.

(22)
where the limit is again finite. Expressions (21) and (22) complete the proof.

Lemma A.4. The probability limit

Mφα = plimT→∞(1/T )
T�
t=1

Mφαt = limT→∞(1/T )
T�
t=1

δ∗(t−1)g�αt, α = δ, γ, c.

(23)
The result follows from (20) and applying the Kolmogorov LLN 1 to

{(1/T )
T�
t=1

gαkt(

∞�
m=0

θmεt−m−j)}

k = 1, ..., q; j = 1, ..., p, where Egαkt(

∞

m=0 θmεt−m−j) = 0 for all t. All the
elements in (23) are finite.
Theorem: Let �θT be the maximum likelihood estimator of θ0,�θT = argmaxLT (θ, ε)

where LT (θ, ε) is defined in (18) and (19). Then,

T 1/2(�θT − θ0) D→ N (0,A−1(θ0)B(θ0)A−1(θ0))

where

A(θ0) = −plimT→∞T
−1

T�
t=1

∂2 (θ,εt)

∂θ∂θ�
|θ=θ0

and

B(θ0) = plimT→∞T
−1

T�
t=1

∂ (θ,εt)

∂θ

∂ (θ,εt)

∂θ�
|θ=θ0 .

We prove the results by verifying the assumptions of Theorem 4.1.6 in
Amemiya (1985).

Lemma A.5 [Thm 4.1.3, Assumption (A)]. LT (θ,εt) continuous in Θ for
each ε.

Proof. From Lemma A.1 and the fact that δ(t) is continuous in θ, it
follows that  (θ,εt) is continuous in Θ for each εt and thus the same is true
for LT (θ,εt).
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Lemma A.6 [Thm 4.1.3, Assumption (B)]. The average Hessian

T−1HT (θ, ε) = T
−1 ∂2

∂θ∂θ�
LT (θ, ε) = T

−1 ∂2

∂θ∂θ�

T�
t=1

 (θ,εt)

converges to a finite nonsingular matrix A(θ0) for any sequence θ
∗
T such that

plimT→∞θ
∗
T = θ0.

Proof. A straightforward calculation yields

T−1HT (θ, ε) = −(σ2T )−1
T�
t=1

gt(θ)g
�
t(θ) + (σ

2T )−1
T�
t=1

εt
∂2gt(θ)

∂θ∂θ�
(24)

Now, eachMαβt = [gαitgβjt], α, β = δ, γ, c, is a matrix of finite elements and
{T−1
T

t=1 gαitgβjt} is a Cesàro summable sequence. It follows that

Mαβ = lim
T→∞

T−1
T�
t=1

Mαβt (25)

is finite. From Lemma A3 it follows that Mφφ = plimT→∞(1/T )

T

t=1Mφφt

is finite, and Lemma A.4 contains a similar result for {(1/T )
T
t=1Mφαt},

α = δ, γ, c. By Kolmogorov’s LLN 1 and uniform convergence of (24),

plimT→∞T
−1 ∂2

∂θ∂θ�
LT (θ, ε)|θ=θ0 = − lim

T→∞
(σ2T )−1

T�
t=1

gt(θ0)g
�
t(θ0) = A(θ0)

(26)
because  (θ,εs) and  (θ,εt) are independent for s = t and because  (θ,εt) is
twice continuously differentiable for all θ and every εt.A(θ0) is finite because
every element of Mαβ, α, β = δ, γ, c, is finite, and positive definite because
gt(θ0)g

�
t(θ0) is positive semidefinite.

Since the convergence of (24) is uniform and continuous, applying Theo-
rem 4.1.5 in Amemiya (1985, p. 113) yields

plimT→∞T
−1 ∂2

∂θ∂θ�
LT (θ, ε)|θ=θ∗T = plimT→∞(σ

2T )−1
T�
t=1

∂2

∂θ∂θ�
 T (θ,εt)|θ=θ0

for any sequence {θ∗T} such that plimT→∞θ
∗
T = θ0. From (26) it follows that

plimT→∞T
−1HT (θ

∗
T , ε) = −limT→∞(σ2T )−1

T�
t=1

gt(θ0)g
�
t(θ0) = A(θ0)
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for θ∗T → θ0. A(θ0) is a negative definite matrix [Thm 4.1.6, Assumption
(B)].

Let s(θ, ε) = ∂LT (θ, ε)/∂θ be the score of (18). We have

Lemma A.7 [Thm 4.1.3, Assumption C].

T−1/2s(θ, ε) = T−1/2
T�
t=1

{∂ (θ,εt)/∂θ}|θ=θ0
D→N (0,B(θ0)).

Proof. From Lemma A.1 one obtains

T−1/2s(θ, ε) = T−1/2
T�
t=1

εt
σ2
gt(θ).

We have
E{∂ (θ,εt)/∂θ|

θ=θ0
} = 0

and

cov{∂ (θ0,εt)/∂θ} = E
ε2t
σ4
Egt(θ)g

�
t(θ)|θ=θ0

= (σ2T )−1Egt(θ0)g�t(θ0).

Then

lim
T→∞

T−1
T�
t=1

cov{∂ (θ,εt)/∂θ}|θ=θ0 = lim
T→∞

(σ2T )−1
T�
t=1

Egt(θ0)g
�
t(θ0).

Let
xjt = ∂ (θ,εt)/∂θj|θ=θ0

so Exjt = 0 and var(xjt) = Ex2jt = E{∂ (θ,εt)/∂θj}2|θ=θ0 . Next assume that

max
t=1,...,T

|xjt|2+φ = Op(1). (27)

It follows that the p-norm

||xjt||2+φ = (E|xjt|2+φ)1/(2+φ) = O(1).
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From (27) we have

x2jt = {∂ (θ,εt)/∂θj|θ=θ0}2 <∞
for all t and nearly all of these terms are positive as T →∞. It then follows
that

σjT = {T−1
T�
t=1

var(xjt)}1/2 = O(1)

and, consequently, for some φ > 0,

maxj=1,...,T ||xjt||2+φ
σjT

≤M <∞, T ≥ 1.

Thus xjt, which is martingale difference sequence with respect to the condi-
tioning information Ft−1 defined by the structure of the likelihood, satisfies
the assumptions of Theorems 6.2.2 and 6.2.3 in Davidson (2000, pp. 123-124),

which proves that (T−1/2

T

t=1 xjt)/σjT
D→ xj ∼ N (0, 1), j = 1, ..., 3q + 1. It

follows that for all linear combinations λ�xt with λ = 0 one obtains λ�xt D→
λ�x, where x = (x1, ..., x3q+1)�. Theorems 3.3.3 and 3.3.4 in Davidson (2000,
p. 46) then yield x ∼ N (0,B(θ0)).
Lemma A.8 [Thm 4.1.6, Assumption (A)]. Function T−1LT (θ, ε) con-

verges to a nonstochastic function L(θ) in probability uniformly in θ (in a
neighbourhood of θ0).

Proof. We have

T−1LT (θ0, ε) = T−1LT (θ0, ε)+T−1
∂

∂θ
LT (θ, ε)|θ=θ0+(2T )−1

∂2

∂θ∂θ�
LT (θ, ε)|θ=θ∗

where each element of θ∗ lies in the interval joining the corresponding ele-
ments of θ and θ0. Then

T−1LT (θ0, ε) → k − (1/2) lnσ2 − plimT→∞(1/2T )
T�
t=1

ε2t
σ2

+plimT→∞(2T )
−1 ∂2

∂θ∂θ�
LT (θ, ε)|θ=θ∗

= k − (1/2) lnσ2 − (σ20/2σ2) + (1/2)(θ − θ0)�H(θ∗)(θ − θ0)
where

H(θ∗) = plimT→∞(1/T )
T�
t=1

∂2εt
∂θ∂θ�

|θ=θ∗ .
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This follows from the Kolmogorov LLN 2 applied to the sequence of indepen-
dent, identically distributed variables ε2t , with Eε

2
t = σ20. The convergence is

uniform because ε2t is continuous for all θ ∈ Θ.

Lemma A.9 [Thm 4.1.6, Assumption (C)]. The probability limit

plimT→∞T
−1HT (θ, ε) = plimT→∞T

−1
T�
t=1

∂2

∂θ∂θ�
 T (θ, ε)

exists and is continuous in a neighbourhood of θ0.

Proof. The probability limit of the average Hessian is given in (26). It
exists and is continuous for all θ. The continuity is a consequence of the fact
that gt(θ) is bounded and infinitely many times differentiable in Θ.

When θ = θ0, (26) becomes

plimT→∞T
−1HT (θ0, ε) = A(θ0).

which is a negative definite matrix.

Proof of Theorem. The result follows from the fact that A(θ0) is
negative definite and from Lemmata A.5— A.9.
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