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In data, frequency-specific predictability

◮ The predictive power of forecasting variables studied in the
literature varies with the time horizons.
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Figure: Horizon-specific predictive regressions. This figure shows the in-sample R2 of simple linear regressions
(with an intercept) of h-period continuously compounded market returns on the CRSP value-weighted index on
h-period past consumption-wealth ratio (solid line with circles) and on h-period past log price-dividend ratio (solid
line with asterisks). For the consumption-wealth ratio regressions, the sample is quarterly and spans the period
1952Q1-2013Q4. For the dividend-price ratio regressions, the sample is annual and spans the period 1952-2013.
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This Paper...

◮ Methodology: We propose a novel econometric framework to
coherently encode the scale-specific information from
alternative predictors.

◮ Goal: Investigate whether the dominant view that long-run
expected returns are the result of an aggregation of short-run
returns is backed up by empirical evidence.

◮ Main Result: We show that expected returns exhibit
aggregation properties which differs wildly from those
obtained within the class of typical ARMA specifications once
conditioning on lower-frequency predictors

◮ Long-lasting effects of past shocks on latent expected returns.

◮ Implications for forecasting returns and investment decisions.
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◮ Objective: The model must

◮ combine scale-specific information in a coherent way;

◮ subsume the standard AR(1) case;

◮ be parsimonious.

◮ Framework: couples standard linear ARMA models at different
frequencies of observation via a stochastic linkage equation.
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Key ingredients:

◮ Latent expected returns; x1:nx ∼ p (x1:nx ) = N (0,Vx).

◮ Scale-specific predictor; z1:nz ∼ q (z1:nz ) = N (0,Qz).

◮ The series x1:nx and z1:nz are specified at different temporal
scales: m × nz = nx , with m > 1:

x1, x2, . . . , xm, z1, xm+1, . . . , x2m, z2, . . .

◮ Link equation: The z values are averages of non-overlapping
groups of m consecutive x ;

p (z1:nz |x1:nx ) =

nz
∏

s=1

N

(

m
−1

m
∑

i=1

x(s−1)m+i , τ

)

= N
(

A · x1:nx , λ
(

A
′

VxA
)

11
I
)

,

where λ measures the relative increase in uncertainty due to the lack of

agreement between time scales.



Multi-Scale Time Series Model (Cont’d)
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Multi-Scale Time Series Model (Cont’d)

◮ Problem: q(z1:nz ), p (z1:nz |x1:nx ) and p(x1:nx ) are generally
inconsistent.

◮ Idea: Restore consistency by “revising” the marginal of
expected returns (see Jeffrey 1957, Jeffrey 1965 and Diaconis and
Zabell 1982)

q (x1:nx ) =

∫

p (x1:nx |z1:nz )
︸ ︷︷ ︸

∝ p(z1:nz |x1:nx )p(x1:nx )

q (z1:nz ) dz1:nz ,



Model Implications: Persistence of Expected Returns

◮ The consistent, namely revised, distribution for expected
returns x1:nx can now be defined as

q (x1:nx ) = N (0,Qx)

where Qx = Vx − B (W − Qz)B
′, with B = VxA

′W−1 and
W = AVxA

′ + λ (A′VxA)11 I .

◮ The parameter λ controls how much information the low frequency

predictor conveys about the expected returns at the high-frequency,

lim
λ→0

AQxA
′ = Qz ,

lim
λ→∞

Qx = Vx .



Model Implications: Persistence of Expected Returns
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Figure: Multi-scale time series Vs AR(1): autocorrelation functions. This figure shows the theoretical
autocorrelation function for a simulated multi-scale time series (red line with circles), the one extracted by
conditioning on the lower-frequency series z (blue line with diamonds), and the theoretical autocorrelation of an
AR(1) with the same autoregressive parameter as the one used to simulate the multi-scale process (cyan with

squares). The parameters φx = φz = 0.9 are fixed across panels, λ = 0.01 and σ2
x = σ2

z = 1. We simulate
nx = 720 with m = 48 in all cases.
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Autocorrelation function of the expected returns for λ =10
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Figure: Multi-scale time series Vs AR(1): autocorrelation functions. This figure shows the theoretical
autocorrelation function for a simulated multi-scale time series (red line with circles), the one extracted by
conditioning on the lower-frequency series z (blue line with diamonds), and the theoretical autocorrelation of an
AR(1) with the same autoregressive parameter as the one used to simulate the multi-scale process (cyan with

squares). The parameters φx = φz = 0.9 are fixed across panels, λ = 10 and σ2
x = σ2

z = 1. We simulate
nx = 720 with m = 48 in all cases.
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◮ Step 1: Predict the observable at the coarse level from the
predictive distribution given the current latent state
p (znz+1 | x1:nx , z1:nz ,Θ);



Model Implications: Forecasting

◮ The multi-scale time series model is built in a cascade way
from coarse to fine levels of resolution.

◮ Step 1: Predict the observable at the coarse level from the
predictive distribution given the current latent state
p (znz+1 | x1:nx , z1:nz ,Θ);

◮ Step 2: Now predict the latent expected returns as
p (xnx+1 : xnx+m | xnx , znz+1,Θ) ∼ N(fx ,Fx) where

fx = r +m
−1

R1
(

m
−21′R1 + λ

(

A
′

VxA
)

11
I
)

−1 (

znz+1 −m
−11′r

)

with r = xnx (φx , . . . , φ
m
x ) and R be the predictive mean and

covariance matrix for a not revised AR(1).

◮ The term
(
znz+1 −m−11′r

)
represents the revision due to

lower frequency information; if λ → ∞ then fx = r .



Simulation: Multiscale Forecasting Vs AR(1)
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Figure: Comparing forecasts in simulation. Except for the between-levels uncertainty all other parameters are fixed,
with φx = φz = 0.9, σ2

x = .5 and σ2
z = 1. The figure shows the m-step ahead multi-scale forecast (magenta line

with diamonds) obtained with λ = 0.06 compared with the m-step ahead (iterated) prediction obtained from an
AR(1) with φx = 0.98 (red line with circles). The results are obtained by averaging forecasts on 20,000 patterns
for predictors and expected returns.



Simulation: Multiscale Forecasting Vs AR(1)

0 100 200 300 400 500 600 700 800
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Simulated expected returns and lower frequency predictor increasing λ = 0.6

Simulated expected returns φ
x
 = 0.9 σ

x
2=.5

Simulated lower frequency predictor φ
z
 = 0.9 σ

z
2=1

One-step ahead forecast for the lower frequency predictor
AR(1) m-step ahead forecast
Multi-scale m-step ahead forecast

Figure: Comparing forecasts in simulation. Except for the between-levels uncertainty all other parameters are fixed,
with φx = φz = 0.9, σ2

x = .5 and σ2
z = 1. The figure shows the m-step ahead multi-scale forecast (magenta line

with diamonds) obtained with λ = 0.6 compared with the m-step ahead (iterated) prediction obtained from an
AR(1) with φx = 0.98 (red line with circles). The results are obtained by averaging forecasts on 20,000 patterns
for predictors and expected returns.
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Figure: Comparing forecasts in simulation. Except for the between-levels uncertainty all other parameters are fixed,
with φx = φz = 0.9, σ2

x = .5 and σ2
z = 1. The figure shows the m-step ahead multi-scale forecast (magenta line

with diamonds) obtained with λ = 6 compared with the m-step ahead (iterated) prediction obtained from an
AR(1) with φx = 0.98 (red line with circles). The results are obtained by averaging forecasts on 20,000 patterns
for predictors and expected returns.



Estimation Strategy: MCMC Algorithm

◮ The complete likelihood can be decomposed as

p
(

x1:nx , z1:nz |φx , λ, σ
2
x , φz , σ

2
z

)

= p
(

x1:nx |z1:nz , φx , λ, σ
2
x

)

q
(

z1:nz |φz , σ
2
z

)

,

Metropolis-within-Gibbs algorithm;

Conjugate, normal-inverse-gamma marginal priors and
standard posterior updates for the predictors z1:nz .

Conjugate, normal-inverse-gamma marginal priors and
Random-Walk Metropolis-Hasting (MH) steps for posterior
updating for the latent expected returns x1:nx .

Acceptance rates around 30% of draws for the MH steps,
convergence is achieved after 20,000 burn-in draws (Geweke
1992 convergence test).
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updating for the latent expected returns x1:nx .
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convergence is achieved after 20,000 burn-in draws (Geweke
1992 convergence test).



Empirical Example

◮ Expected returns are extracted at a monthly frequency
conditioning on the joint dynamics of:

◮ The log dividend-price ratio sampled at a 4-year horizon,
averaged (ndp = 15,m = 48);

◮ The consumption-wealth ratio sampled at a one-year horizon
(ncay = 60,m = 12).

◮ Sample period is 1952:01-2013:12.

◮ Alternative prior specifications for the parameters.

◮ The windows m are chosen based on marginal likelihood
evidences.



Posterior Estimates of the Multi-Scale Parameters
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Figure: This figure reports the posterior distributions of the parameters for the latent expected returns extracted by
using jointly the annual consumption-wealth and the four-year log dividend-price ratios. The blue line with
diamonds shows the posterior distribution obtained from our benchmark prior specification. The light-blue and
red-circled lines represent the posterior distribution obtained under tighter and weaker prior elicitation. Estimates
are obtained from a sample of 30,000 draws out of 50,000 simulations, storing every other draw. The sample
period is 1952:01-2013:12.
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Figure: This figure reports the posterior distributions of the parameters for the latent expected returns extracted by
using jointly the annual consumption-wealth and the four-year log dividend-price ratios. The blue line with
diamonds shows the posterior distribution obtained from our benchmark prior specification. The light-blue and
red-circled lines represent the posterior distribution obtained under tighter and weaker prior elicitation. Estimates
are obtained from a sample of 30,000 draws out of 50,000 simulations, storing every other draw. The sample
period is 1952:01-2013:12.



Posterior Estimates of the Multi-Scale Parameters
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Figure: This figure reports the posterior distributions of the parameters for the latent expected returns extracted by
using jointly the annual consumption-wealth and the four-year log dividend-price ratios. The blue line with
diamonds shows the posterior distribution obtained from our benchmark prior specification. The light-blue and
red-circled lines represent the posterior distribution obtained under tighter and weaker prior elicitation. Estimates
are obtained from a sample of 30,000 draws out of 50,000 simulations, storing every other draw. The sample
period is 1952:01-2013:12.



Persistence of Expected Returns Vs Sum of two AR(1)
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Figure: This figure shows the ACF of expected returns estimated by jointly considering both the annual
consumption-wealth ratio (m = 12) and the 4-year log dividend-yield (m = 48) as scale-specific predictors (solid
line with diamonds).



Persistence of Expected Returns Vs Sum of two AR(1)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag (one−year time step)

Autocorrelation function of the extracted expected returns Vs ARMA(2,1) (one−year aggregation)

 

 

ACF from the multi−scale model (one−year aggregation) − posterior mean
ACF from the multi−scale model (one−year aggregation) − 2.5th percentile
ACF from the multi−scale model (one−year aggregation) − 97.5th percentile
ACF from the ARMA(2,1) with φ

1
=0.83, φ

2
=−0.10, θ

1
 = −0.15 (one−year aggregation)

Figure: This figure shows the ACF of expected returns estimated by jointly considering both the annual
consumption-wealth ratio (m = 12) and the 4-year log dividend-yield (m = 48) as scale-specific predictors,
aggregated over 1-year (solid line with diamonds).
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Figure: This figure shows the ACF of expected returns estimated by jointly considering both the annual
consumption-wealth ratio (m = 12) and the 4-year log dividend-yield (m = 48) as scale-specific predictors,
aggregated over 4-year (solid line with diamonds).



Persistence of Expected Returns Vs OLS fitted value
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ACF from the multi−scale model − posterior mean
ACF from the multi−scale model − 2.5th percentile
ACF from the multi−scale model − 97.5th percentile
ACF from OLS fitted value of returns on CAY
ACF from OLS fitted value of returns on CAY and log DP
ACF from OLS fitted value of returns on log DP

Figure: Comparison with OLS expected returns: autocorrelation functions. This figure shows the autocorrelation
functions of the expected returns extracted by using jointly both the annual consumption-wealth ratio (m = 12)
and the four-year log dividend-price (m = 48), in comparison to the ones implied by standard OLS predictive
regressions. The Figure displays the posterior average autocorrelation function (solid line with diamonds) along
with the 95% confidence intervals (dashed lines). We compare the autocorrelation from the multi-scale against the
one implied by the fitted values of a standard predictive regression with the log dividend-price ratio (black line with

squares), with the consumption-wealth ratio (red line with circles), and with both the log dividend-price and the
consumption-wealth ratio (green line with triangles).



Expected Returns Vs OLS fitted value
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Figure: Comparison with OLS. The expected return process is estimated by jointly considering both the annual
consumption-wealth ratio (m = 12) and the 4-year log dividend-price (m = 48) as scale-specific predictors. We run
simple (multiple) regressions of quarterly returns on our extracted series, and on the consumption-wealth ratio (on
the dividend-price ratio and the consumption-wealth ratio). The figure compares our expected return series (solid
line with diamonds) with the OLS fitted value from the consumption-wealth ratio (red line with circles) as well as
with the fitted value from a multiple regression of quarterly returns onto CAY and log DP (green line with
triangles).



Forecasting Accuracy of Future Expected Returns
Panel A: Mean Squared Error

Forecasting Horizon (months)
Model h = 12 h = 24 h = 36 h = 48
AR(1) 2.346 4.082 4.262 4.877
Sum of two AR(1) 2.321 3.924 4.157 4.766
AR(1) with time-varying mean 3.521 4.178 4.209 4.721
Multi-scale 2.355 3.739 3.796 4.277

Panel B: Log-Predictive Score

Forecasting Horizon (months)
Model h = 12 h = 24 h = 36 h = 48
AR(1) -23.578 -27.627 -27.836 -28.434
Sum of two AR(1) -23.503 -27.327 -27.631 -28.252
AR(1) with time-varying mean -31.071 -30.369 -30.391 -30.701
Multi-scale -23.319 -26.463 -26.603 -27.158

Table: Forecasting accuracy measures. This table reports summary statistics about the forecasting accuracy of
future expected returns obtained from our multi-scale time series model. The forecasting performance of the model
is compared with: (1) the forecasts obtained from a simple AR(1) fitted on the extracted expected returns; (2) the
forecasts obtained from a sum of two independent (at all leads and lags) AR(1) processes; (3) the forecasts
obtained from an AR(1) model for which the mean is stationary and is allowed to vary stochastically over time.
The latent series of expected returns and corresponding forecasts are obtained from the joint process of the log
dividend-price and the consumption-wealth variable CAY. Forecasts are produced monthly with an horizon of
h = 48 months. For the ease of exposition the table reports the results for h = 12, 24, 36, 48 months. Panel A:

Mean Squared Errors obtained from the marginal predictive mean. Panel B: Log predictive scores obtained from
the marginal predictive likelihood. Draws from the predictive distribution are obtained from a sample of 30,000
draws out of 50,000 simulations, with a thinning size of 20. The sample period is 1952:01-2013:12.
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AR(1) with time-varying mean 3.521 4.178 4.209 4.721
Multi-scale 2.355 3.739 3.796 4.277

Panel B: Log-Predictive Score

Forecasting Horizon (months)
Model h = 12 h = 24 h = 36 h = 48
AR(1) -23.578 -27.627 -27.836 -28.434
Sum of two AR(1) -23.503 -27.327 -27.631 -28.252
AR(1) with time-varying mean -31.071 -30.369 -30.391 -30.701
Multi-scale -23.319 -26.463 -26.603 -27.158

Table: Forecasting accuracy measures. This table reports summary statistics about the forecasting accuracy of
future expected returns obtained from our multi-scale time series model. The forecasting performance of the model
is compared with: (1) the forecasts obtained from a simple AR(1) fitted on the extracted expected returns; (2) the
forecasts obtained from a sum of two independent (at all leads and lags) AR(1) processes; (3) the forecasts
obtained from an AR(1) model for which the mean is stationary and is allowed to vary stochastically over time.
The latent series of expected returns and corresponding forecasts are obtained from the joint process of the log
dividend-price and the consumption-wealth variable CAY. Forecasts are produced monthly with an horizon of
h = 48 months. For the ease of exposition the table reports the results for h = 12, 24, 36, 48 months. Panel A:

Mean Squared Errors obtained from the marginal predictive mean. Panel B: Log predictive scores obtained from
the marginal predictive likelihood. Draws from the predictive distribution are obtained from a sample of 30,000
draws out of 50,000 simulations, with a thinning size of 20. The sample period is 1952:01-2013:12.



Conclusions

◮ Our multi-scale based expected returns series exhibits
aggregation properties which differs wildly from those
obtained

◮ within the class of typical ARMA specifications, e.g.
ARMA(2,1);

◮ from standard OLS fitted value.

◮ Combining information at multiple horizons to construct
short-term expected returns has important implications for
forecasting

◮ Framework widely applicable to other problem where multiple
frequency are relevant:

1. short-term rate forecasts: trade-off between long-run targets
(inflation, gdp) and higher frequency market fluctuations.

2. inflation forecasts: long-run unemployment rate, volatility,etc.
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